Die Zunehmende Digitalisierung ermöglicht eine Reihe neuartiger, 3D-Druck Techniken, mit denen die individualisierte Herstellung von Produkten auf Basis digitaler Datensätze möglich ist. Der Transfer dieser Technologie von den klassischen Ingenieurwissenschaften in die Medizintechnik durch die Kombination mit Daten aus den Life Sciences, welche z.B. mit modernen 3D Bildgebungsverfahren erhoben werden, birgt ein enormes Potential zur Verbesserung von Therapiemöglichkeiten und Organersatz.
Ziel meiner Doktorarbeit ist es, digitale Datensätze von Gewebestrukturen in ein funktionales Gewebe zu überführen. Am Beispiel der Lunge werde ich eine 3D Gewebe-Fertigungsplattform, entwickeln, die es erlaubt, (1) organspezifische Datensätze aufzubereiten und in 3D Druckvorlagen zu konvertieren, (2) biologisches Gewebe mit zellulärer Auflösung zu generieren und (3) die Funktionalität von generierten Gewebesegmenten zu überprüfen. Diese neuartige Technologie wird in Zukunft patientenspezifische Wirkstofftests zur schnellen und präzisen Auswertung von idealen Therapiemöglichkeiten, sowie Organersatz ohne Abstoßung durch die Immunabwehr ermöglichen.
Herstellung eines 3D Gewebemodells zur Untersuchung und gezielten Stimulation von Zellmigration und Zellwachstum entlang von E-Modul Gradienten der Extrazellulären Matrix
MEMBER IN THE JOINT ACADEMIC PARTNERSHIP
since
Joint Academic Partnership Resource Efficiency and Materials
Prof. Dr. Hauke Clausen-Schaumann
Projects:
- Investigating the role of integrin signaling in articular cartilage biomechanics by indentation type atomic force microscopy and single cell force spectroscopy
- Mechanische Charakterisierung von biologischen Materialien mittels der Laser-Doppler Vibrometrie
- Investigation of structure function relationships in degraded articular cartilage using indentation-type atomic force microscopy and novel strategies to determinethe degradation depth.
- Strukturelle und biomechanische Analyse des Gelenkknorpels von genetischen Mausmodellen mittels Rasterkraftmikroskopie
- Mechanotransduction on the single cell level
- Laser-induced transfer of human mesenchymal cells using near infrared femtosecond laser pulses for the precise configuration of cell nichoids
- Herstellung eines 3D Gewebemodells zur Untersuchung und gezielten Stimulation von Zellmigration und Zellwachstum entlang von E-Modul Gradienten der Extrazellulären Matrix
- Entwicklung einer 3D-gedruckten Mikrofluidik zur Analyse der Fluiddynamik in Blutgefäßen
Prof. Dr. Oliver Hayden
Forschungsschwerpunkte:
- In vitro und in vivo Diagnostik
- Sensorik
- Mikrofluidik
Projects:
- Manipulation von Zellen in einer mikrofluidischen Messkammer
- Herstellung eines 3D Gewebemodells zur Untersuchung und gezielten Stimulation von Zellmigration und Zellwachstum entlang von E-Modul Gradienten der Extrazellulären Matrix
- Entwicklung einer 3D-gedruckten Mikrofluidik zur Analyse der Fluiddynamik in Blutgefäßen
Amelie Erben
Hochschule München University of Applied Sciences
Master of Science (Maschinenwesen)
- Bachelor-Studium „Ingenieurwissenschaften“ an der Technischen Universität München
Titel „Additivierung von Silikonen zur Verbesserung der Bio- und
Hämokompatibilität für medizinische Utensilien“
- Master-Studium „Maschinenwesen“ an der Technischen Universität München
Titel „Entwicklung und Charakterisierung von druckbaren Biomaterialien für den
Nano-3D-Druck zur Untersuchung des Zell-Migrationsverhaltens“
- Promotionsprojekt zum Thema Herstellung eines 3D Gewebemodells zur Untersuchung und gezielten Stimulation von Zellmigration und Zellwachstum entlang von E-Modul Gradienten der Extrazellulären Matrix an der Hochschule für angewandte Wissenschaften München in Kooperation mit der Technischen Universität München
CANTER - Center for Applied Tissue Engineering and Regenerative Medicine
Hochschule München / Munich University of Applied Sciences
Lothstr. 34, C200
80335 Munich
amelie.erben@hm.edu